Variance function estimation in multivariate nonparametric regression with fixed design
نویسندگان
چکیده
Variance function estimation in multivariate nonparametric regression is considered and the minimax rate of convergence is established in the iid Gaussian case. Our work uses the approach that generalizes the one used in [A. Munk, Bissantz, T. Wagner, G. Freitag, On difference based variance estimation in nonparametric regression when the covariate is high dimensional, J. R. Stat. Soc. B 67 (Part 1) (2005) 19–41] for the constant variance case. As is the case when the number of dimensions d = 1, and very much contrary to standard thinking, it is often not desirable to base the estimator of the variance function on the residuals from an optimal estimator of the mean. Instead it is desirable to use estimators of the mean with minimal bias. Another important conclusion is that the first order difference based estimator that achieves minimax rate of convergence in the one-dimensional case does not do the same in the high dimensional case. Instead, the optimal order of differences depends on the number of dimensions.
منابع مشابه
Nonparametric variance function estimation with missing data
In this paper a fixed design regression model where the errors follow a strictly stationary process is considered. In this model the conditional mean function and the conditional variance function are unknown curves. Correlated errors when observations are missing in the response variable are assumed. Four nonparametric estimators of the conditional variance function based on local polynomial f...
متن کاملNonparametric multivariate conditional distribution and quantile regression
In nonparametric multivariate regression analysis, one usually seeks methods to reduce the dimensionality of the regression function to bypass the difficulty caused by the curse of dimensionality. We study nonparametric estimation of multivariate conditional distribution and quantile regression via local univariate quadratic estimation of partial derivatives of bivariate copulas. Without restri...
متن کاملVariance Function Estimation in Multivariate Nonparametric Regression
Variance function estimation in multivariate nonparametric regression is considered and the minimax rate of convergence is established. Our work uses the approach that generalizes the one used in Munk et al (2005) for the constant variance case. As is the case when the number of dimensions d = 1, and very much contrary to the common practice, it is often not desirable to base the estimator of t...
متن کاملEstimating the error distribution in nonparametric multiple regression with applications to model testing
In this paper we consider the estimation of the error distribution in a heteroscedastic nonparametric regression model with multivariate covariates. As estimator we consider the empirical distribution function of residuals, which are obtained from multivariate local polynomial fits of the regression and variance functions, respectively. Weak convergence of the empirical residual process to a Ga...
متن کاملMultivariate Local Polynomial Kernel Estimators: Leading Bias and Asymptotic Distribution∗
Masry (1996b) provides estimation bias and variance expression for a general local polynomial kernel estimator in a general multivariate regression framework. Under smoother conditions on the unknown regression and by including more refined approximation terms than that in Masry (1996b), we extend the result of Masry (1996b) to obtain explicit leading bias terms for the whole vector of the loca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Multivariate Analysis
دوره 100 شماره
صفحات -
تاریخ انتشار 2009